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Section II will focus on related works and how this paper 
differentiates from them. Section III will elaborate on the 
cloud architecture common to many cloud structures that will 
be used in our game model. Section IV will be the set up of 
the game model and diagram the game in normal (matrix) 
form. After analyzing the game result in Section V in the 
simplest case, we will extend our model in Section VI. Section 
VII will present numerical results and compare our model’s 
negative externality to other common allocation methods. 
Section VIII concludes the paper. 

II. BACKGROUND & RELATED WORK

A major issue in cloud computing is how the cloud 
provider will allocate the virtual machine instances created by 
a constant stream of clients. There are many ways to go about 
this problem that has been looked at in previous papers. Many 
of the solutions offered are virtual machine allocation based 
on load balancing techniques, energy consumption, or both. 
[2][5][8][9]. Wei et al. [5] use game theory in order to 
maximize the efficiency of resources within a cloud 
computing environment.  Beloglazov et al. [9] offered several 
algorithmic solutions rooted in heuristics for energy and 
performance.  Jing Xu and Jose A. B. Fortes [2] introduced 
several algorithms to achieve allocative efficiency such as 
Beloglazov et al. did.  Jalaparti et al. [8] attempted to solve the 
issue of cloud resource allocation with game theory similar to 
Wei et al. They sought to model the intricate client to client 
and client to provider interactions using game theory.   

Game theory has also been applied to cloud computing in 
certain aspects, including infrastructure resilience [3], cloud 
usage pricing [4], and virtual machine allocation [5], [6] [8].  

Han et al. [6] demonstrated a new method of infiltration 
that can be exploited through the cloud and not traditional 
computing: through side channels. This gives rise to new risks 
as hardware to create VM’s is shared between users, which 
attackers can exploit. By starting a VM in the same server as a 
target user, an attacker can siphon sensitive information from 
them, including web traffic and even encryption keys. This 
paper uses game theory to find the best method for mitigating
such attacks that have been shown to have a 40% success rate 
of VM’s achieving co location with the target users VM  [7]. 

Rao et al. [3] studied the ability of a cloud computing 
entity within the framework of game theory to provide a given 
capacity C at a certain probability P given a physical or cyber 
attack on their infrastructure. A simple game was set up in 
which a cloud provider with a certain amount of servers S was 
to defend against an attacker attacking these servers. Among 
the possible ways to mitigate attack was for the provider to 
use reinforcement strategies, which decreased attacker utility. 
It was concluded through several tests that the survivability of 
an attack (the ability to operate at capacity C under probability 
P) was heavily influenced by the cost of defense and the cost 
of an attack. If the cost of a defense is high, then the provider 
chooses to defend the sites and thus the survivability was 0 in 
this case due to an attack.  

Kunsemoller and Karl [4] examined the economics of 
cloud computing and its viability for a given business to use. 

Game theory was specifically used to model a few 
circumstances in which it would be economically beneficial to 
use cloud services. Payoff for the provider is clearly 
maximized if they charge the highest price in which there is a 
cost benefit for the client to use cloud services, or the 
breakeven point.  

Outside of game theory or VM allocation, another 
important work includes Ristenpart et al. [7] and their work on 
discovering new vulnerabilities in the cloud structure. They 
looked at the idea of co resident attacks on virtual machines 
within the cloud network. Unlike any predecessor, however, 
this paper used empirical evidence and actual data from 
running experiments on the Amazon EC2 cloud. They began 
by running all 5 instance types that EC2 offers across 3 
available placement zones within the cloud. From this it was 
determined that IP assignment is very uniform in that IP 
addresses are partitioned by availability zones (most likely to 
make it each to manage separate network connectivity for 
these zones). Using this information, there was a test to 
determine co residence on network based technology (it was 
also shown that this type of technology need not be used). 
Eventually it was shown that an efficient attacker can achieve 
co residence up to 40% of the time an attack is launched. 
Once co residence was achieved, several methods could be 
used to extract information from or damage the victim. This 
included measuring cache usage, launching DOS attacks, 
keystroke timing attacks, stealing cryptographic keys and 
estimating traffic rates. It was concluded that currently for 
unconditional security against cross VM attacks, one must 
avoid co residence. 

Kamhoua et al. [1] viewed attacks on the hypervisor and 
compromising virtual machines from a game theoretical 
perspective. One of the larger issues presented in [1] is also 
present in this paper: interdependency. Interdependency in [1] 
dealt mainly with the issue of one user’s lack of investment 
compromising the security integrity of another user on the 
same hypervisor since an attack on the hypervisor may 
propagate to other users. This is also present in the current 
paper but emphasized to a much lesser extent and is not the 
main focus. Interdependency in general still plays a crucial 
role in both papers, however, and the choices of the players 
reflect the relevant payoffs of the other players as well.  In the 
current paper we resolve the negative externality in [1] that 
one player imposes on another. Our solution is through 
effective VM allocation management of the cloud provider to 
ensure delivery of maximum security for all cloud users. The 
negative externalities are minimized because users with 
similar potential loss choose to be located on the same 
hypervisor. This is one of the main contributions of our paper. 

III. SYSTEM MODEL

A public cloud infrastructure that is running on Hypervisor 
H1 has n users that are denoted as User U11, U12 …  U1n whom 
each run virtual machines VM11 , VM12 … VM1n. Note that the 
first subscript states which hypervisor each user is located on 
and the second subscript denotes the user number. For 
example, the first user operating on hypervisor 3 is written as 
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U31 and a second user as U32. Additionally, we do not make 
the distinction between the cloud tenant and user. For practical 
purposes, the tenant is the true entity that manages the VM’s 
as a liaison while the ‘user’ in cloud terminology is the end 
user who hires the tenant and benefits from the cloud (and also 
the one to realize any ill effects of asset loss). We will assume 
that the cloud tenant will act in good faith (and do what is the 
most secure or best) for the end user and thus the remainder of 
the paper will refer to the end user only. Each user may run 
multiple virtual machine instances (and multiple operating 
systems) but it will be assumed that each user runs one VM 
for simplification purposes as it will be shown later that 
multiple VM’s run by one user may be mathematically 
combined into one VM.  The number of applications run by a 
user will also not impact the model. Although the physical 
infrastructure a cloud use will vary (such as different 
hypervisors like Xen, VMware, KVM), the underlying 
principle of a shared platform in which users are exposed to 
collateral damage holds true. 

It is evident that several issues arise within the cloud 
infrastructure once this model is examined. Users that run on 
the same hypervisor are susceptible to a ‘bad neighbor’ effect
in which an attacker, who has compromised one user’s VMs, 
may transverse across the hypervisor to launch an attack on 
another user’s VMs on the same hypervisor. This is the 
problem of interdependency. We hold that if the hypervisor is 
compromised, then that all users located on that hypervisor 
will be compromised (and suffer the consequences) as well.  
This is because once an attacker compromises the hypervisor, 
all VM’s hosted on that hypervisor can be freely compromised 
by the attacker. However, if a user does not have VMs on the 
same hypervisor than the one being targeted, then they will 
not suffer the consequences. This remark will play an 
important role later in the paper. Section IV will now explain 
and setup the problem in the context of game theory. 

IV. GAME MODEL

This section considers four players, an attacker and three 
users, acting across two hypervisors. The four players are 
assumed to be rational, and that they all have an understanding 
of the system in which the game is played. Furthermore, it is 
expected that each player can calculate and maximize their 
payoff (i.e., utility). In Section VI we extend the problem to n
players and m hypervisors. 

Along with the commonly applied game theoretic 
assumptions of rationality and common knowledge of the 
game’s space, we further assume that the attacker has 3 
strategies: to launch an attack on User 1 (this strategy will be 
denoted as A1), on User 2 (A2) or on User 3 (A3). The attacker 
may only attack one user directly at a time. The strategy to 
launch an attack may include steps such as: collecting 
information, credential compromising, executing attack 
payload, establishing backdoor, and scanning. The strategy for 
the User 2 is binary since that user’s only choices are to invest
(I) in security or to not invest (N) in security. In the instance of 
choosing to invest in security, the user will be allocated to 
hypervisor 2 (H2) while no investment in security will result in 

User 2 being allocated to hypervisor 1 (H1). The user that 
chooses to invest may take multiple courses of action, 
including updating software, buying new antivirus software, 
and applying stricter system monitoring. In this way, H2 is the 
more secure platform for security  conscious cloud users. It is 
important to note that throughout the remainder of the paper, 
we shall refer to users that invest (do not invest) in cloud 
security and users that are allocated to H2 (H1)
interchangeably.  

Furthermore, User 1 will automatically be allocated onto 
H1 (no investment in security) and User 3 will be allocated to 
H2 (investment in security). This means that the only user 
making a choice as to invest in security or not will be User 2. 
Since User 2 will have two strategies (I or N) and the attacker 
has three strategies (A1, A2, or A3), there are a total of six 
possible permutations in the normal form game, as diagramed 
in Table 1. 

The reason for the automatic allocation of User 1 and User 
3 is as follows: It is assumed that the relative ‘importance’ of 
each user is determined by the total maximum loss that can be 
suffered by the user if compromised. This is denoted by 
��, ��, and ��  with the subscripts corresponding to each 
respective user. This means that if User 1’s virtual machines 
were compromised, then User 1 would suffer a loss totaling 
��. Additionally, we assume that 

�� < �� < ��          (1)
Which implies that User 3 will suffer the most costly 

damage (for example, through loss of information, trade 
secrets, client information, etc.) if its virtual machines are 
compromised, and User 1 the least amount of damage. Since 
User 3 faces the biggest potential for loss and User 1 the least, 
it is logical that User 3 would invest into security (and be 
allocated to H2) and that User 1 would not invest in security 
(and be allocated to H1). Thus, the only cloud user making an 
investment choice in this game will be User 2. The sufficient 
conditions under which User 1 and 3 will always be allocated 
to H1 and H2, respectively, will be shown in the model 
extension. Additionally, the strategy profile for the game is 
stated in Table 1 as (attacker strategy, User 2 strategy). For 
example, the profile of an attacker that attacks User 1 while 
User 2 invests in security is given as (A1, I).

The probability of an attack that is successful on an 
individual user that has invested in security is given as ��, who 
pays cost � for his investment. If they have not invested in 
security, then the probability of compromise is �	 . It is 
assumed that  

0 < �� < �	 < 1          (2)
Because if �� > �	 then no logical user would choose to 

invest in security since it does not lower their chance of being 
compromised.  

The probability for a successful attack on the hypervisor 
after one of its VM is compromised is given as 
, where we 
assume 

0 < 
 < 1          (3)
It is strong to assume that there will be no chance of a 

successful attack on the hypervisor (
 = 0), especially since 
the current hypervisor security situation is very unclear [11]. 
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We also consider that not all attacks on the hypervisor will 
definitively allow for compromise (
 = 1) and thus Equation 
(3) results. Lastly, it is assumed that the reward from using 
cloud services (either invested, I, or not invested N) is given as 
�. This could include monetary savings from outsourcing IT 
or on demand resources that can dynamically change 
depending on the relative need. 

Looking again to the normal form game on Table 1, the 
attacker’s strategies are represented in the row (and the top 
equation of the six game possibilities gives the attacker’s 
payoff) and User 2’s strategies are shown on the column (and 
the bottom six equations give the user’s payoff). Thus, a game 
profile of (A1, I) would give the attacker a payoff of �	�� and 
User 2 a payoff of � − �.

The payoffs are calculated as follow, taking strategy 
profile (A1, I) as a first example: User 2 will receive reward �
from using the cloud services (this is true for all 6 game 
possibilities) and will pay expense � for the cost of paying for 
extra security. Since User 2 is not being attacked directly and 
is located on the different hypervisor from what is being 
targeted, the user’s expected loss from a successful attack is 0.  
Thus, the payoff for User 2 is � − �. For the attacker targeting 
User 1, since User 1 has not invested its chance of being 
compromised is �	. To find the probabilistic loss of User 1, 
we must multiply the chance of compromise by its total 
possible loss (�� ), which gives an expected loss of �	�� .
Since User 1 is the only user located on the first hypervisor, 
the total gain for the attacker targeting User 1 is �	��. 

Taking the strategy profile (A1, N) as another example, we 
can see that the payoff for User 2 is the reward �  minus
�	
�� . The quantity �	�� is the expected loss from a 
successful compromise of User 2. However, we must multiply 
this quantity by 
 since User 2 is not a direct target and in 
order to be compromised the attacker must first compromise 
the hypervisor. If User 2 was the main target of the attacker, as 
seen in strategy profile (A2, N), we can see that User 2’s 
payoff is the reward � minus the expected loss �	��  without 
the value 
 since the attacker need not go through the 
hypervisor in order to compromise the virtual machines of 
User 2 if User 2 is a direct target.  

Table 1: Game Model in Normal Form 
User 2

Attacker

N I
A1 �	�� + �	
��

� − �	
��

�	��

� − �

A2 �	�� + �	
��

� − �	��

���� + ��
��

� − � − ����

A3 ����

�
���� + ��
��

� − � − ��
��

 When viewing the strategy profile (A2, I) from the 
attacker’s perspective we can see that his reward is twofold. 
His payoff from attacking User 2 is ���� (User 2’s expected 
loss). In addition, the quantity of ��
�� is added to the 
attacker’s payoff since User 3 lies on the same hypervisor (H2)
as User 2 even though User 3 is not directly being targeted by 

the attacker. Since User 3 is not a direct target, and the 
attacker must propagate his attack through the hypervisor first 
before compromising User 3. As a result, 
 is multiplied to 
User 3’s expected loss (giving  ��
�� ), and thus the total 
payoff for the attacker is ���� + ��
��. Similar methods are 
used to derive the other payoffs for all of the other profiles. 

V. GAME ANALYSIS

In this analysis we seek the different Nash equilibrium 
from the game model. In game theory, when the Nash 
equilibrium profile is reached, no player can improve his 
utility by unilaterally deviating from the result. At this point, 
no player wants to change their strategy since it is the best 
response based on the other player’s actions, which means all 
players’ choices are in a Nash equilibrium profile. In this way, 
Nash equilibrium can predict the behavior of rational agents.  

We make the following three observations. First, (A1, N)
cannot be a Nash equilibrium since the attacker can improve 
his utility by playing A2. Second, (A2, I) cannot be a Nash 
equilibrium since the attacker can improve his utility by 
playing A3. Third, (A3, I) cannot be a Nash equilibrium since 
User 2 can improve his utility by playing N. However, we can 
have the pure strategy Nash equilibrium profile (A3, N), (A2,
N) and (A1, I) under the specific conditions below.   
Theorem 1: 

If ��  >
�


��
(��  +  
��).                                                         (4)  

Is true, then the strategy profile (A3, N) is Nash equilibrium 
of the game in Table 1.

Theorem 2: 
If �� <

�


��
(��  +  
��),                                                          (5)

and 
� >  (�	 − ��)��,                                                                  (6)

then the strategy profile (A2, N) is a Nash equilibrium. 
Theorem 3:   
If �� >

��

�

(L�  +  
��)                                                        (7)       

and  
� < �	
��                                                                               (8)  
Then the strategy profile (A1, I) is a Nash equilibrium 
The proof of those Theorems is straightforward. We omit 

them because of space limitation. If none of the conditions of
Theorems 1, 2 or 3 for pure Nash equilibrium are fully met, 
then the problem admits a mixed Nash equilibrium. 
Mixed Nash Equilibrium 

A mixed Nash equilibrium is different from pure Nash in 
the sense that the players do not play a single strategy with an 
absolute certainty but rather with a probabilistic strategy for 
each choice. For example, User 2 might play N with 
probability �

�
 and I with probability �

�
. The conditions and 

formulas for the equations of mixed Nash will be shown. 
Theorem 4:  

If the following 3 conditions hold: 

�� <
�


��
(��  +  
��),                                                            (9)  

� < (�	 − ��)��,                                                                   (10)  
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�� <
��

�

(��  +  
��),                                                            (11)  

Then the game admits a mixed strategy Nash equilibrium. 
Proof: 

We can see that if (11) holds, the strategy A1 is never an 
optimum and is not needed for calculations for the equations 
of Nash equilibrium. Thus, we will only use strategy profiles 
A2 and A3 for the attacker. The reasoning given is as follows: 
If the defender (User 2) chooses to not invest, the attacker 
prefers to play A2 because Equation (9) holds.  When the 
attacker plays A2, the defender prefers to switch from not 
investing to investing to avoid the attacker, since Equation 
(10) holds. Thus, if User 2 invests and moves from H1 to H2
the attacker prefers to switch his strategy from A2 to A3
because (1) and (3). Lastly, since the attacker is now playing 
A3 the defender will want to switch from investing to not 
investing in order to avoid an indirect compromising of virtual 
machines. As a result, these four strategy profiles circulate 
among each other indefinitely with no final stoppage point. 
This shows that there is no pure Nash equilibrium (because 
there is no strategy in which both players will remain for 
certain) but rather a strategy profile of each player that plays a 
given strategy probabilistically. 

Remark: Note that this circulation of strategies does not 
include A1 as a strategy for the attacker, showing that this 
strategy will never be an optimum for the attacker and thus 
never played. The remaining 4 choices ((A2, N), (A2, I) (A3, N),
A3, I)) that result will be the payoffs that are used to calculate 
mixed Nash equilibrium.  

At the mixed Nash equilibrium, User 2 must randomize in 
such a way that the attacker is indifferent to choosing either 
strategy, or ��(A2) = ��(A3). Let α be the probability by which 
User 2 choose N. This gives: 

��(A2)=  �(�	�� + �	
��) + (1 − �)(���� + ��
��)  (12)  
��(A3)=  �(����) + (1 − �)(���� + ��
��)         (13)  

As stated, in order to find α we must equalize these two 
functions and solve. This gives: 

� =
��[(�� + 
��) − (�� + 
��)]

�	(�� + 
��) − ��(�� + 
��) + ��
��

          (14)

which means that User 2 will play strategy N with 
probability � and I with probability (1 − �).

We will now examine the attacker’s mixed Nash 
equilibrium by letting �(A2) + (1 − �)(A3) being the strategy 
of the attacker. Given this, we can see that  

��(�) =  �(� − �	��) + (1 − �)(�)         (15)

��(�) =  �(� − � − ����) + (1 − �)(� − � − ��
��)  (16)
At the mixed Nash equilibrium, the attacker must 

randomize in such a way that the defender (User 2) is 
indifferent to choosing either strategy. Equalizing these two 
equations and solving out for β leaves us with: 

� =
(� + ��
��)

�	�� − ����(1 − 
)
          (17)

Next, It is straightforward to verify that 0 < � < 1  and 
0 < � < 1 in all instances so there is no case in which any 
values produce an inappropriate value for �  or � . We will 
extend this model’s scope beyond three users and its 
implications. 

VI. MODEL EXTENTION & DISCUSSION

For our model extension, all our previously stated 
assumptions remain in place except the number of users is 
now increased to n. The number of hypervisors remains at 
two. In practice, there is a one to one mapping of hypervisors 
to physical servers, so with m hypervisors cloud clients can 
pay for increasingly structured levels of security, with H1
being the least secure and Hm being the most secure.  The 
reasoning we applied for two hypervisors is the same for m
hypervisors.   

One of the main results that we can draw from n users is 
that among all the n users there will only be one discrete user 
in which they alone will make a decision as to which 
hypervisor they allocate, i.e., all other users will remain static 
in their allocation choice regardless of the number of players. 
This is why User 1 and User 3 were statically placed in H1 and 
H2, respectively. The observation behind this is as follows: 
there exists only one user who will sit on the threshold of 
choosing between investing in security and not investing in 
security because all other users’ expected loss magnitudes 
balance out. This makes this user unique; unlike the other 
users, this one is unable to choose between  invest or not 
invest in a binary sense, since whatever hypervisor the user 
chooses to allocate will be attacked because the user will ‘tip’ 
the payoff for the attacker in that direction. This gives rise to 
this unique player having a mixed Nash equilibrium whereas 
all other players have pure, and static, Nash equilibrium.  

Since the attacker will always attack the ‘largest’ player in 
the targeted hypervisor, if the unique user were to allocate to 
H1, the unique user will be the direct victim of the attack since 
by default it will be the largest player on H1. This is because 
all players will be grouped by loss potential on the hypervisors 
since a small loss gap between players will minimize the 
externality imposed on each other and thus maximize security. 
This is a well studied problem in game theory and is known as 
Hotelling’s Law [14]. In this context, players are self grouping 
by potential maximum loss. Thus, having the largest and 
smallest potential loss players grouped on one hypervisor and 
all of the in between potential loss players on another 
hypervisor is not observed; rather, players will be will be 
allocated with other users with similar total loss potentials. 

Formally, for a game having n players and with critical 
User l (1 < l < n), Users 1, 2 … l 1 will be located on H1 and 
Users l+1, l+2… n 1, n will be located on H2. If User l
chooses to allocate to H1, then he will be the direct target of 
the attack. If he chooses to allocate to H2, then User n will be 
the direct target and User l merely becomes an indirect target 
by factor 
. Thus, in order for a user to be the pivotal user, the 
following two equations must be satisfied: 
�	
�� + ⋯ +�	
�� � + �	�� > ��
���� + ⋯ + ����      (18)
�	
�� + ⋯ +�	�� �

< ��
�� + ��
���� + ⋯ + ��
�� � + ����    (19)
As can be seen, the pivotal user shifts the inequality and thus 
the where the attacker will focus his attack. Furthermore, we 
can verify that User 1 and n will always choose to not invest 
(H1) and invest (H2), respectively if the range of � is as

��(�	 − ��
) < � < ��(�	 − ��)          (20)
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VII. NUMERICAL RESULTS AND ANALYSIS

The game analysis provides an in depth explanation of the 
pure and mixed Nash equilibria. Our key variables in the 
analysis were �, �	 , �� , ��, ��, ��,  
 and �. We show how 
User 2’s payoff changes with respect to a change in some 
selected variables, and how sometimes after a certain 
threshold is passed that the equilibrium may shift.  

A. Changes in User 2’s payoff with respect to ��

In this first section we provide to set specific values for all 
of the aforementioned constants save for ��  and graph the 
results. For our first example we will take � = 1.5, �� = .1,
�	 = .4, 
 = .1, �� = 1,    �� = 100,  and � = .4 . Using 
Equation 20, we see that . 39 < � < 30, so this verifies that �
is an appropriate value. Looking at Figure 1, we can see the 
payoff of User 2 change as �� increases.  

Figure 1: Changes in User 2’s Payoff with his Potential Loss L2.

The first thing we can immediately see is that there is a 
strategy change from (A3, N) to mixed Nash equilibrium at ��

= 24.9. This is because from 1 < ��< 24.9, the condition for 
pure Nash equilibrium is satisfied (4) up until 24.9.  After that, 
Equation (4) is falsified, all 3 conditions of mixed Nash 
equilibrium are fulfilled, and thus a strategy change occurs at 
this point. Notice that as �� approaches the value of ��, there 
is diminishing payoff from using the cloud and even turns 
negative at �� ≈ 77 for the given value of �. In fact, as ��

increases, α and β decrease and User 2 Invests less often.
However, the frequency of direct attack on User 2 increases to 
cause the decrease on User 2’s payoff. The implications of a 
negative payoff is that after reaching a negative payoff, User 2
will completely opt out of using cloud services.  

B. Changes in User 2’s payoff with respect to !
Moving onto Figure 2, we hold all of the same values as 

before except we set �� = 10, �� = 20 and graph the applicable 
value of � with respect to changing payoff.  

Figure 2: Changes in User 2’s Payoff with Expense e. 

Too high of a value for �� will always result in profile (A3,
N), so therefore the potential loss values will be more closely 
clustered in this example.  As shown before, the range for e is 
given in Equation (20) which results in . 39 < � < 6. This will 
be our range for the x axis. We can see a strategy change from 
mixed Nash equilibrium to pure Nash at � = 3 . This is 
intuitive since after that threshold, the choice of investing for 
User 2 becomes too expensive and unfeasible and thus the 
pure Nash equilibrium (A2, N) results. Note that User 2 will 
not invest in cloud security at this Nash equilibrium even 
though they know they are a direct target of the attacker. 
Furthermore, for the selected value of R User 2 will not use of 
cloud services at all unless there is a low value of �
(specifically � =  1.213).

C. Changes in User 2’s payoff with respect to "
Figure 3 shows the changing payoff of User 2 as we 

change the probability of compromising the hypervisor, 
. We 
use the same values as set in analysis B, change 
  from a 
constant to a variable, and set � =  .4.

Figure 3: Changes in User 2’s Payoff with Probability π. 
It is apparent that there is no shift in Nash equilibrium 

across all values of 0 < 
 < 1 . These results are not 
surprising, as an increasing 
  only slightly increases the 
externality imposed onto User 2 by other users. The increasing 
externality problem imposed by an increasing 
 does not pose 
a significant difference to change any strategies of the player. 
This is a very significant discovery since in [1] there was a
Nash equilibrium shift if 
 reached a certain threshold but in 
this analysis it is not the case, thus validating one of the main 
aims of this research to reduce the externality imposed onto 
one user by another. However, it is possible that 
 may shift 
the Nash equilibrium this only in exceptional cases in which 
the conditions for two different Nash equilibria are very close 
to being met. One instance is that if �� ≈

�#

�$
(��  +  
��), then 


  may shift the inequality either way and thus change the 
Nash equilibrium. In most cases, the Nash equilibrium will not 
change from the initial conditions and is a very positive sign 
that this security based allocation will have an effect of 
mitigating the externality problem.  

It is apparent that a direct attack is much more of an 
importance when deciding where to allocate. As we will see in 
the next variable analysis, the ��

�

 ratio is also very important in 

determining the prevalent Nash equilibrium.  
D. Changes in User 2’s payoff with respect to %&

For this section we will take � = 1.5, �	 = .5, 
 = .1,
�� = 1, �� = 10, �� = 20, and � = .4. 
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(same values in part B and C except for �	), using �� as a 
variable. We take 0 < �� < .5 (since �� < �	) and the results 
can be seen on Figure 4. For small values of ��, the pure Nash 
profile (A1, I) exists. This makes sense since if the probability 
for compromising a VM on the secure hypervisor was too low 
as to discourage any type of attack, then it would be a higher 
payoff for the attacker to target those users who chose to not 
invest.

Figure 4: Changes in User 2’s Payoff with probability ��. 
At �� ≈.0238, the Nash equilibrium changes to a mixed 

strategy and then changes again to the pure Nash equilibrium 
(A3, N) at �� ≈.2525. This second switch of Nash equilibria 
also is feasible since as the ��

�

 ratio becomes closer to 1, the '*

'-

ratio becomes more a dominant factor in the calculations and 
at the second threshold the disparity becomes so large such 
that �� ≫ �� and the switch to strategy profile (A3, N) occurs.  

E. Model Extension to n = 10 users  
In this section we will continue our model extension and not 
limit our discussion to simply three players. We will take 
� = 1.5, �	 = .4, �	 = .1, 
 = .1, � = .4 as before and, per 
section VI, set the number of users as n = 10. For all of our 
potential loss values, we will use �� = 1, �� = 2, �� =

3,  �� = 4, �: = 5, �; = 6, �? = 7, �@ = 8, �A = 9, ��B =
10. 

Our next step is to find which of the ten users the pivotal 
user is while the remaining nine stay static. Thus, we must 
find the user such that Equations (18) and (19) are true.  

By calculating individual potential losses, we find that 
User 4 is the pivotal user.   

Using Equation (20), we find that . 39 < � < 3  which 
shows our selected value of � is within the restricted range. It 
is important to note that the value of �  will have a strong 
influence on the prevailing Nash equilibrium. If . 39 > � then 
the price for security would be so inexpensive that it would be 
logical for all users (1 10) to allocate to H2. If � > 3 then the 
security would be so expensive such that no user would want 
to invest in security (and all will as a result allocate to H1).
Within the allowable range given by (26) there is some 
interesting results.  From . 39 < � < 1.56  there will be a 
mixed strategy in which User 4 will have a mixed Nash 
equilibrium while all other users will remain in their 
respective hypervisors. (U1, U2, and U3 allocate to H1 while 
U5, U6, U7, U8, U9, and U10 allocate to H2). The threshold of 
1.56 is determined by the maximum value in which User 4 
will potentially still pay for security. Past this point, investing 
in security will become too expensive and thus 1.56 < � < 3

will result in a pure Nash equilibrium in which U1, U2, U3, and 
U4 allocating to H1 while all other users allocate to H2.

To further show the critical role of User 4, we have 
diagrammed the changing payoff structure for the attacker on 
Figure 5 as the number of users of each hypervisor changes. 

Figure 5: Change in attacker’s Payoff with the Number of Users on 
the attacked hypervisor. 

As can be seen, one line (blue) represents the attacker 
payoff for attacking H1, and another (red) shows the attacker 
payoff for attacking H2. For example, the payoff for the 
attacker targeting H2 if all users are located on H1 is 0. If there 
is 1 user on H2 (by default User 10), then the attackers payoff 
is ����B , which is 1.0. As the number of users on the 
hypervisor increases, the attacker payoff increases. The 
opposite will be true if the number of players decreases. 

We can see that the payoffs for each strategy (attacking H1
versus attacking H2) intersect between when there are three 
and four players on H1 and the remaining players on H2, which 
corresponds to User 4 as pivoting user. This means that at this 
point the attacker becomes aware of which hypervisor User 4 
has allocated, since  User 4’s hypervisor allocation stems from 
pursuit of a higher payoff. As stated before, the strategy that 
U4 chooses will depend on the prevailing value of �. Since 
� = .4, we will have a mixed Nash equilibrium.  

In Figure 6 we show the reduced externality from the 
mixed strategy placement of User 4 and the optimum 
placement of the other users.  

Figure 6: Externality Based on Selected Allocation Types 
The first and second bars represent the total externality if

all users were placed on H1 and H2, respectively. This was 
calculated by adding all the payoffs of the attacker that 
contained a factor of 
. So the externality of all users on H2
was calculated as the sum of ��
�A + ⋯ + ��
�� and H1
similarly. This would be an externality for a fairly common 
allocation method such as for power consumption where all 
users are clustered on as few hypervisors as possible. The 
third bar represents the externality from five VM’s located on
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H1 and H2 each, which is supposed to represent another 
common allocation method: load balancing. Given our initial 
conditions, the attacker would attack H1 with probability 1 and 
thus the externality is calculated as 
�	
�� + �	
��+�	
�� + �	
��. With five users on H1, the 
largest user (U5) will be the direct target while all other 
players will be calculated in the externality Figure since they 
are all indirect targets.  

The fourth bar shows the externality imposed onto other 
users in the instance of the mixed Nash equilibrium. As can be 
seen, the negative externality is significantly reduced 
compared to both power consumption and load balancing 
allocation methods, to the magnitude of 20% externality 
reduction from the second closest value (bar three).

The fifth bar shows the externality imposed onto other 
users when using random placement, which is a common VM 
allocation method. This value was determined by randomly 
allocating the VM’s among H1 and H2 10 times and averaging 
the result. This allocation is the worst except for placing all 
users in the less secure hypervisor H1. Our proposed allocation 
method based on mixed strategy Nash equilibrium has 125%
externality reduction as compared to the random allocation 
method. 

VIII.CONCLUDING REMARKS

The unique properties of a cloud computing structure can 
allow for new avenues of attack. One of the issues presented 
was the one of externality, where one user’s lack of security 
may affect another who has significantly more to lose. The 
paper in [1] presented the externality problem within the 
context of game theory, and this paper aimed to solve it. By 
allowing users to allocate to hypervisors based on whether 
they have invested in security or not, we can reduce a negative 
externality that users may impose on each other. In allowing 
this type of allocation over traditional means, such as load 
balancing or energy optimization, we observe that users will 
cluster to the same hypervisor as other users based on the most 
similar loss potentials in order to minimize the negative 
interdependent effects. Additionally, we have shown that with 
this type of VM allocation mechanism, there is no significant 
strategy change with respect to the value of 
, which is further 
proof that the negative externalities in this model are 
mitigated. This remains true even at extreme values such as 

≈ 0 or 
 ≈ 1. These findings are supported in Figure 6 by 
showing that our allocation method resulted in the lowest 
amount of externality by a fair margin.   

Thus, the Nash equilibrium strategy is more susceptible to 
the initial conditions such as the potential loss the users face 
or the cost of investment. It is apparent that the value of �
plays a crucial role in determining the Nash equilibrium as 
shown in section E of the Numerical Results. For cloud 
providers, this information is very useful in that they may set 
the value of �  and pre determine the Nash equilibrium best 
suited for the maximum level of security and minimized 
externality. For the end users, knowledge of these values can 
be crucial in examining whether the cloud is a useful tool to 
use for reducing cost or a concept that has yet to prove its 

worth due to its subtle yet inherent dangers. Our future work 
will consider incomplete information games where the users 
do not know the magnitude of other players’ expected loss.
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